
ERASMUS UNIVERSITY ROTTERDAM

Java and CPLEX

Paul Bouman

1

ERASMUS UNIVERSITY ROTTERDAM

• The JVM and Native Code

• Libraries and Packages

• Linear Programming and the CPLEX library

• Example: Precedence Constrained Knapsack Problem

• Model Class

• Solving and Updating the Model

• Final Hints and Tips

2

Overview

ERASMUS UNIVERSITY ROTTERDAM

The JVM and Native Code

3

ERASMUS UNIVERSITY ROTTERDAM

• Internally, computers work with a fixed set of simple instructions.

• Writing these instructions directly is called low level programming.
• No features such as loops, functions, objects, etc. Only (conditional) jumps,

and elementary data types.

• Since this is error-prone and cumbersome, most programmers use
high level programming languages (such as Java)

• As a result we need a compiler which translates a high-level
program into machine instructions to be executed by the computer.

• Traditional compilers (e.g. for C and C++) convert high-level code
into machine instructions directly.

4

Compilers

ERASMUS UNIVERSITY ROTTERDAM

• The Java compiler produces bytecode, which are best described as
machine instructions for a fictional machine. Regular computers still
don’t understand these instructions!

• This bytecode is translated into machine code by the Java Virtual
Machine (JVM).
• Early JVM implementations were inefficient, but over 20 years of R&D have

resulted in a very optimized and efficient JVM which is often competitive
with native implementations in terms of speed.

• Advantage: you compile once and can run your program on any
type of hardware or OS which has a JVM implementation

• Disadvantage: you lose some of the nitty-gritty control that can be
important when you want to exploit specific strengths of particular
hardware

5

Compilers – Virtual Machines

ERASMUS UNIVERSITY ROTTERDAM 6

Compilers – Traditional Languages vs VM Languages

High Level Code

Compiler

Machine Instructions

High Level Code

Compiler

Bytecode (virtual machine
instructions)

Virtual Machine /
JIT Compiler

Machine Instructions

Everything at
Compile Time

Byte Code
generation at
Compile Time

Conversion of Byte
Code to Machine
Code at Run Time

ERASMUS UNIVERSITY ROTTERDAM

• Some specialistic software has been in development for decades
and is very optimized.
• LAPACK (Linear Algebra Package) is written in FORTRAN and used by

MATLAB, numpy, for linear algebra computations

• CPLEX library for optimization

• Many others…

• The Java Native Interface (JNI) allows us to make use of very
efficient libraries that were not written in Java.

7

Native Code

ERASMUS UNIVERSITY ROTTERDAM

Libraries and Packages

8

ERASMUS UNIVERSITY ROTTERDAM

“If I have seen further it is by standing on the shoulders of giants”

Sir Isaac Newton (1676)

9

Libraries

ERASMUS UNIVERSITY ROTTERDAM

• In software development, Newton’s famous quote is just as relevant
as in science in general.

• The Collections framework is a good example of this: instead of
having to program complicated data structures and sorting
algorithms by yourself, you can use them as building blocks for your
programs.

• For many specialistic topics, there is no framework included with
the standard Java distribution, but many programmers provide
libraries for specific tasks.
• Think about matrix operations, solving mathematical optimization

problems, performing statistical tests, etc.

10

Libraries

ERASMUS UNIVERSITY ROTTERDAM

• A package contains a bunch of classes or interfaces that “naturally”
belong together.

• Often they are some URL reversed, like org.apache.commons, java.util,
java.io

• Classes and interfaces from different packages than “the current
one” need to be imported (it is often best to let Eclipse handle this).

• When using a library Java will add a number of packages, classes
and interfaces for us to use, just like the ones we can already use,
such as ArrayList

11

Java - Packages

ERASMUS UNIVERSITY ROTTERDAM

• Java libraries come in two flavours:

• Pure Java Libraries where everything in written in Java and
compiled to bytecode. These have the advantage that can run
everywhere and are relatively easy to include to your project (you
add the library to the classpath and you are done)

• Native Java Libraries where you have both a Java component you
have to add to the classpath, as well as a native library (Windows:
.dll, Mac/Linux: .so) which has to be added to the native library path
of the JVM. You also lose portability.

• Today we discuss the IBM ILOG CPLEX library as an example of a
native library. Using a pure Java library typically requires less effort.

12

Java - Libraries

ERASMUS UNIVERSITY ROTTERDAM

• Typical steps
1. Create a directory lib in your project and put the relevant files there

2. Go to the project properties, which can be access by right clicking on your
project folder or via the Project menu in the menu bar.

3. Go to the Java Build Path option

4. Press add jars and select a .jar file to the classpath (see next slide)

5. If it is a native library: add the path of the native library (only directory)

• Watch the YouTube video if you need help.

13

Java – Importing a Library Into Eclipse

ERASMUS UNIVERSITY ROTTERDAM

• Eclipse Projects that are configured with a Java version up to 8 only
have the classpath on which you libraries must be loaded.

• Project configured with Java version 9 or later have a classpath and
a module path.

• Consider to create a Java 8 project (Use JavaSE-1.8 as the execution
environment)

• Easiest solution for most small scale Java 9+ projects:
• Don’t create a module-info.java file and add the libraries to the classpath.
• Delete module-info.java if you created it.

• For CPLEX: afaik no module-based version. If you really want to use
the module system (not recommended):
• Add cplex.jar to the module path
• Add requires cplex; to your module-info.java file

14

Java – Classpath / Modulepath

ERASMUS UNIVERSITY ROTTERDAM

• Eclipse Projects that are configured with a Java version up to 8 only
have the classpath on which you libraries must be loaded.

• Project configured with Java version 9 or later have a classpath and
a module path.

• Consider to create a Java 8 project (Use JavaSE-1.8 as the execution
environment)

• Easiest solution for most small scale Java 9+ projects:
• Don’t create a module-info.java file and add the libraries to the classpath.
• Delete module-info.java if you created it.

• For CPLEX: afaik no module-based version. If you really want to use
the module system (not recommended):
• Add cplex.jar to the module path
• Add requires cplex; to your module-info.java file

15

Java – Classpath / Modulepath

ERASMUS UNIVERSITY ROTTERDAM

• When working with a library, we will probably want to obtain some
objects
• Unless everything in the library is static, but that is not very common.

• The most likely ways are:
• Calling constructors, eg. new ArrayList<Integer>();

• Calling static methods, eg. BigInteger.valueOf(12);
• Being created by another object, eg. list.iterator();

• To figure out which style or styles are being used by your library of
choice, you should Read the Friendly Manual
• Sometimes you have a good step-by-step tutorial that gets you started
• Sometimes there are some examples that you can study.
• In other case you should search through API documentation and/or

JavaDocs to figure out how to create and use objects.
• It never hurts to experiment a bit!

16

Design Choices – Obtaining Objects

ERASMUS UNIVERSITY ROTTERDAM

Linear Programming
and the CPLEX library

17

ERASMUS UNIVERSITY ROTTERDAM 18

Linear Programming

Minimize or Maximize 𝑐𝑥

Subject to 𝐴𝑥 ≤ 𝑏

𝑥 ∈ ℝ𝑑

Minimize or Maximize 𝑞𝑦

Subject to 𝐷𝑦 ≤ 𝑏

𝑦 ∈ ℕ𝑘

Minimize or Maximize 𝑐𝑥 + 𝑞𝑦

Subject to 𝐴𝑥 + 𝐷𝑦 ≤ 𝑏

𝑥 ∈ ℝ𝑑, 𝑦 ∈ ℕ𝑘

Different types of linear programs exists.

Linear Program
(sometimes LP-relaxation of)

Integer Linear Program

Mixed Integer Linear
Program

Easy to solve: Simplex
Method, Interior Point
Methods

Hard to solve: use Linear
Programming Relaxation
+ Branching Algorithm

Same as Integer Linear
Program

ERASMUS UNIVERSITY ROTTERDAM

• A formula usually creates a relationship between mathematical
expressions.

• The building blocks of mathematical expressions are:
• Constants: 2, 8.6, 𝜋

• Variables: 𝑥𝑖, 𝑦𝑗
• Operators: ×,+,−, etc.

• Parenthesis (to avoid ambiguity): ()

• An mathematical expression is either:
1. A constant or a variable

2. An mathematical expression surrounded by parentheses

3. Two mathematical expressions connected by an operator

19

The Grammar of Formulas

ERASMUS UNIVERSITY ROTTERDAM

• Example: 2𝑥 + 3 ⋅ (2𝑦 + 4𝑧)

20

The Grammar of Formulas

2 𝑥 3

2 𝑦 4 𝑧

×

××

×

+

+

ERASMUS UNIVERSITY ROTTERDAM

• Mathematical expressions can be constructed by combining smaller
expressions recursively, in a tree structure

• A formula is often a relationship between two expressions:
• 𝑒𝑥𝑝𝑟1 ≤ 𝑒𝑥𝑝𝑟2
• 𝑒𝑥𝑝𝑟1 ≥ 𝑒𝑥𝑝𝑟2
• 𝑒𝑥𝑝𝑟1 = 𝑒𝑥𝑝𝑟2

• The CPLEX library offers “Concert Technology” which allows us to
build models by means of larger and larger expressions, starting
with constants and variables.

• These expressions can be used to add constraints and optimization
objectives to your mathematical model.

21

The Grammar of Formulas

ERASMUS UNIVERSITY ROTTERDAM 22

CPLEX Class Hierarchy

IloNumExpr

ERASMUS UNIVERSITY ROTTERDAM 23

CPLEX Class Hierarchy

IloNumExpr

ERASMUS UNIVERSITY ROTTERDAM 24

CPLEX Class Hierarchy

IloNumExpr IloIntExpr

ERASMUS UNIVERSITY ROTTERDAM 25

CPLEX Class Hierarchy

IloNumExpr IloIntExpr

ERASMUS UNIVERSITY ROTTERDAM 26

CPLEX Class Hierarchy

IloNumExpr IloIntExpr

IloNumVar

ERASMUS UNIVERSITY ROTTERDAM 27

CPLEX Class Hierarchy

IloNumExpr IloIntExpr

IloNumVar

ERASMUS UNIVERSITY ROTTERDAM 28

CPLEX Class Hierarchy

IloNumExpr IloIntExpr

IloNumVar IloIntVar

ERASMUS UNIVERSITY ROTTERDAM 29

CPLEX Class Hierarchy

IloNumExpr IloIntExpr

IloNumVar IloIntVar

IloAddable

ERASMUS UNIVERSITY ROTTERDAM 30

CPLEX Class Hierarchy

IloNumExpr IloIntExpr

IloNumVar IloIntVar

IloAddable IloObjective

ERASMUS UNIVERSITY ROTTERDAM 31

CPLEX Class Hierarchy

IloNumExpr IloIntExpr

IloNumVar IloIntVar

IloAddable

IloRange

IloConstraint

IloObjective

ERASMUS UNIVERSITY ROTTERDAM 32

CPLEX Class Hierarchy

IloModeler

IloNumExpr IloIntExpr

IloNumVar IloIntVar

IloAddable

IloRange

IloConstraint

IloObjective

ERASMUS UNIVERSITY ROTTERDAM 33

CPLEX Class Hierarchy

IloCplex

IloModeler

IloNumExpr IloIntExpr

IloNumVar IloIntVar

IloAddable

IloRange

IloConstraint

IloObjective

By design, the only class of which we are
going to call a constructor is IloCplex.

On the created IloCplex object we will call
methods that produce all the different

interface types we just discussed. We don’t
call their constructors, this is all managed

internally by the IloCplex object.

ERASMUS UNIVERSITY ROTTERDAM 34

IloCplex – important methods

Model Management Options:
void clearModel()
void importModel(String name)
void exportModel(String name)
void setOut(OutputStream s)

Solution Management:
double getObjValue()
double getValue(IloNumExpr expr)
double getDual(IloRange rng)
boolean solve()
void writeSolution(String name)
void readSolution(String name)

Variable Creation:
IloIntVar intVar(int min, int max)
IloIntVar boolVar()
IloNumVar numVar(double lb, double ub)

Building Expressions:
IloNumExpr constant(double c)
IloIntExpr constant(int c)

IloNumExpr diff(double v, IloNumExpr e1)
IloIntExpr diff(IloIntExpr expr1, IloIntExpr expr2)
IloIntExpr diff(IloIntExpr e, int v)
IloNumExpr diff(IloNumExpr e, double v)
IloNumExpr diff(IloNumExpr e1, IloNumExpr e2)
...

IloNumExpr prod(double v, IloNumExpr e1)
IloIntExpr prod(IloIntExpr e1, IloIntExpr e2)
IloIntExpr prod(IloIntExpr e, int v)
IloNumExpr prod(IloNumExpr e, double v)
...

IloNumExpr sum(double v, IloNumExpr e)
IloIntExpr sum(IloIntExpr e1, IloIntExpr e2)
IloIntExpr sum(IloIntExpr e1, IloIntExpr e2, IloIntExpr e3)
IloIntExpr sum(IloIntExpr e, int v)
IloNumExpr sum(IloNumExpr e1, IloNumExpr e2)
...

Adding Constraints:
IloRange addEq(IloNumExpr expr, double rhs)
IloConstraint addEq(IloNumExpr e1, IloNumExpr e2)

IloRange addGe(IloNumExpr expr, double rhs)
IloConstraint addGe(IloNumExpr e1, IloNumExpr e2)

IloRange addLe(IloNumExpr expr, double rhs)
IloConstraint addLe(IloNumExpr e1, IloNumExpr e2)

Adding an objective function:
IloObjective addMaximize(IloNumExpr expr)
IloObjective addMinimize(IloNumExpr expr)

ERASMUS UNIVERSITY ROTTERDAM 35

IloCplex – important methods

Model Management Options:
void clearModel()
void importModel(String name)
void exportModel(String name)
void setOut(OutputStream s)

Solution Management:
double getObjValue()
double getValue(IloNumExpr expr)
double getDual(IloRange rng)
boolean solve()
void writeSolution(String name)
void readSolution(String name)

Variable Creation:
IloIntVar intVar(int min, int max)
IloIntVar boolVar()
IloNumVar numVar(double lb, double ub)

Building Expressions:
IloNumExpr constant(double c)
IloIntExpr constant(int c)

IloNumExpr diff(double v, IloNumExpr e1)
IloIntExpr diff(IloIntExpr expr1, IloIntExpr expr2)
IloIntExpr diff(IloIntExpr e, int v)
IloNumExpr diff(IloNumExpr e, double v)
IloNumExpr diff(IloNumExpr e1, IloNumExpr e2)
...

IloNumExpr prod(double v, IloNumExpr e1)
IloIntExpr prod(IloIntExpr e1, IloIntExpr e2)
IloIntExpr prod(IloIntExpr e, int v)
IloNumExpr prod(IloNumExpr e, double v)
...

IloNumExpr sum(double v, IloNumExpr e)
IloIntExpr sum(IloIntExpr e1, IloIntExpr e2)
IloIntExpr sum(IloIntExpr e1, IloIntExpr e2, IloIntExpr e3)
IloIntExpr sum(IloIntExpr e, int v)
IloNumExpr sum(IloNumExpr e1, IloNumExpr e2)
...

Adding Constraints:
IloRange addEq(IloNumExpr expr, double rhs)
IloConstraint addEq(IloNumExpr e1, IloNumExpr e2)

IloRange addGe(IloNumExpr expr, double rhs)
IloConstraint addGe(IloNumExpr e1, IloNumExpr e2)

IloRange addLe(IloNumExpr expr, double rhs)
IloConstraint addLe(IloNumExpr e1, IloNumExpr e2)

Adding an objective function:
IloObjective addMaximize(IloNumExpr expr)
IloObjective addMinimize(IloNumExpr expr)

Many more variants available. Have a look at the
documentation to figure out what you can and

can’t do.

There are also useful method if you prefer to work
with arrays of variables, in a style that closer

resembles working with vectors.

ERASMUS UNIVERSITY ROTTERDAM

1. Read instance data from a file into an instance data structure

2. Convert the graph data structure to a CPLEX model

3. Solve the CPLEX model and report the results

36

Solving an LP: Steps Required

ERASMUS UNIVERSITY ROTTERDAM

Example:
Precedence Constrained

Knapsack Problem

37

ERASMUS UNIVERSITY ROTTERDAM

• Often when we describe a linear programming model for a certain
problem, we don’t use the matrix notation.

• Example: The Precedence Constrained Knapsack Problem (PCKP)

• Input:
• A list of 𝑛 items, each with a weight 𝑤𝑖 and a profit 𝑝𝑖
• A capacity of the knapsack, 𝑏

• A directed precendence graph 𝐺 defined on the items

• Output:
• A selection of items such that the sum of their profits is maximized, while

the sum of their weights does not exceed the capacity. Items can only be
included if all its successors in 𝐺 are also selected.

38

Linear Programming - PCKP

ERASMUS UNIVERSITY ROTTERDAM

• Example: The Precedence Constrained Knapsack Problem.

• Item 3 can only be included if both Item 1 and 2 are included.

• Item 5 and Item 4 can only be included if Item 3 is included.

• Item 5 can only be included if both Item 4 and Item 5 are included.

39

Linear Programming – PCKP

Item 1

Item 2

Item 3

Item 4

Item 5

Item 5

ERASMUS UNIVERSITY ROTTERDAM

• Example: The Precedence Constrained Knapsack Problem.
• Input:

• A list of 𝑛 items, each with a weight 𝑤𝑖 and a profit 𝑝𝑖
• A capacity of the knapsack, 𝑏

• A directed precendence graph 𝐺 defined on the items

• Output:
• A selection of items such that the sum of their profits is maximized, while the sum of their weights

does not exceed the capacity. Items can only be included if all its successors in 𝐺 are also selected.

40

Linear Programming – PCKP

Maximize
෍

𝑖=1

𝑛

𝑝𝑖𝑥𝑖

subject to:
෍

𝑖=1

𝑛

𝑤𝑖𝑥𝑖 ≤ 𝑏

𝑥𝑖 ≤ 𝑥𝑗 ∀ 𝑖, 𝑗 ∈ 𝐺

𝑥𝑖 ∈ {0,1} ∀𝑖 ∈ {1, … , 𝑛}

ERASMUS UNIVERSITY ROTTERDAM

1. Read instance data from a file into an instance data structure

2. Convert the graph data structure to a CPLEX model

3. Solve the CPLEX model and report the results

41

Solving an LP: Steps Required

ERASMUS UNIVERSITY ROTTERDAM 42

The Item class
public class Item
{

private final int profit;
private final int weight;

public Item(int profit, int weight)
{

super();
this.profit = profit;
this.weight = weight;

}

public int getProfit()
{

return profit;
}

public int getWeight()
{

return weight;
}

@Override
public String toString()
{

return "Item [profit=" + profit
+ ", weight=" + weight + "]";

}
}

ERASMUS UNIVERSITY ROTTERDAM 43

The DirectedGraph class
public class DirectedGraph<V,A>
{

…

public DirectedGraph() {…}

public void addNode(V node) throws IllegalArgumentException {…}
public void addArc(V from, V to, A arcData) throws IllegalArgumentException {…}
public List<V> getNodes() {…}
public List<DirectedGraphArc<V,A>> getArcs() {…}
public List<DirectedGraphArc<V,A>> getOutArcs(V node) throws IllegalArgumentException {…}
public List<DirectedGraphArc<V,A>> getInArcs(V node) throws IllegalArgumentException {…}
public int getNumberOfNodes() {…}
public int getNumberOfArcs() {…}
public int getInDegree(V node) throws IllegalArgumentException {…}
public int getOutDegree(V node) throws IllegalArgumentException {…}

}

• This is a general class for directed graphs. We can associate different kinds of data
with the nodes and the arcs.
• For example Integer’s or String’s: DirectedGraph<Integer,String>
• But also: DirectedGraph<MyNode,MyArc> (probably necessary for the

assignment)

ERASMUS UNIVERSITY ROTTERDAM 44

The DirectedGraphArc class
public class DirectedGraphArc<V,A>
{

private final V from;
private final V to;
private final A data;

public DirectedGraphArc(V from, V to, A data)
{

this.from = from;
this.to = to;
this.data = data;

}

public V getFrom()
{

return from;
}

public V getTo()
{

return to;
}

public A getData()
{

return data;
}

}

ERASMUS UNIVERSITY ROTTERDAM 45

Reading instance data

3

10 5

7 2

15 7

2

2 0 expensive

0 1 cheap

At the beginning of the file,
put a number that states how
many items will follow. In this

example, we have 3 items.

ERASMUS UNIVERSITY ROTTERDAM 46

Reading instance data

3

10 5

7 2

15 7

2

2 0 expensive

0 1 cheap

Each item consists of two data
elements (in this example).
This line contains the first

item.

ERASMUS UNIVERSITY ROTTERDAM 47

Reading instance data

3

10 5

7 2

15 7

2

2 0 expensive

0 1 cheap

After we defined all the items,
we also define the relations

between the items.
In this example we have two

relationships.

ERASMUS UNIVERSITY ROTTERDAM 48

Reading instance data

3

10 5

7 2

15 7

2

2 0 expensive

0 1 cheap

We use three data pieces to
model a relationship: two
integers and a description.

ERASMUS UNIVERSITY ROTTERDAM 49

Reading instance data

3

10 5

7 2

15 7

2

2 0 expensive

0 1 cheap

public static DirectedGraph<Item,String> read(File f) throws FileNotFoundException
{

try (Scanner scan = new Scanner(f))
{

DirectedGraph<Item,String> result = new DirectedGraph<>();
List<Item> items = new ArrayList<>();

// Reading the items
int numItems = scan.nextInt();
for (int i=0; i < numItems; i++)
{

int profit = scan.nextInt();
int weight = scan.nextInt();
Item item = new Item(profit,weight);
items.add(item);
result.addNode(item);

}

// Reading the arcs / precedence constraints
int numArcs = scan.nextInt();
for (int i=0; i < numArcs; i++)
{

int fromIndex = scan.nextInt();
int toIndex = scan.nextInt();
String reason = scan.next();

Item from = items.get(fromIndex);
Item to = items.get(toIndex);
result.addArc(from, to, reason);

}

return result;
}

}

ERASMUS UNIVERSITY ROTTERDAM 50

Reading instance data

3

10 5

7 2

15 7

2

2 0 expensive

0 1 cheap

public static DirectedGraph<Item,String> read(File f) throws FileNotFoundException
{

try (Scanner scan = new Scanner(f))
{

DirectedGraph<Item,String> result = new DirectedGraph<>();
List<Item> items = new ArrayList<>();

// Reading the items
int numItems = scan.nextInt();
for (int i=0; i < numItems; i++)
{

int profit = scan.nextInt();
int weight = scan.nextInt();
Item item = new Item(profit,weight);
items.add(item);
result.addNode(item);

}

// Reading the arcs / precedence constraints
int numArcs = scan.nextInt();
for (int i=0; i < numArcs; i++)
{

int fromIndex = scan.nextInt();
int toIndex = scan.nextInt();
String reason = scan.next();

Item from = items.get(fromIndex);
Item to = items.get(toIndex);
result.addArc(from, to, reason);

}

return result;
}

}

ERASMUS UNIVERSITY ROTTERDAM 51

Reading instance data

3

10 5

7 2

15 7

2

2 0 expensive

0 1 cheap

public static DirectedGraph<Item,String> read(File f) throws FileNotFoundException
{

try (Scanner scan = new Scanner(f))
{

DirectedGraph<Item,String> result = new DirectedGraph<>();
List<Item> items = new ArrayList<>();

// Reading the items
int numItems = scan.nextInt();
for (int i=0; i < numItems; i++)
{

int profit = scan.nextInt();
int weight = scan.nextInt();
Item item = new Item(profit,weight);
items.add(item);
result.addNode(item);

}

// Reading the arcs / precedence constraints
int numArcs = scan.nextInt();
for (int i=0; i < numArcs; i++)
{

int fromIndex = scan.nextInt();
int toIndex = scan.nextInt();
String reason = scan.next();

Item from = items.get(fromIndex);
Item to = items.get(toIndex);
result.addArc(from, to, reason);

}

return result;
}

}

ERASMUS UNIVERSITY ROTTERDAM 52

Reading instance data

3

10 5

7 2

15 7

2

2 0 expensive

0 1 cheap

public static DirectedGraph<Item,String> read(File f) throws FileNotFoundException
{

try (Scanner scan = new Scanner(f))
{

DirectedGraph<Item,String> result = new DirectedGraph<>();
List<Item> items = new ArrayList<>();

// Reading the items
int numItems = scan.nextInt();
for (int i=0; i < numItems; i++)
{

int profit = scan.nextInt();
int weight = scan.nextInt();
Item item = new Item(profit,weight);
items.add(item);
result.addNode(item);

}

// Reading the arcs / precedence constraints
int numArcs = scan.nextInt();
for (int i=0; i < numArcs; i++)
{

int fromIndex = scan.nextInt();
int toIndex = scan.nextInt();
String reason = scan.next();

Item from = items.get(fromIndex);
Item to = items.get(toIndex);
result.addArc(from, to, reason);

}

return result;
}

}

ERASMUS UNIVERSITY ROTTERDAM 53

Reading instance data

3

10 5

7 2

15 7

2

2 0 expensive

0 1 cheap

public static DirectedGraph<Item,String> read(File f) throws FileNotFoundException
{

try (Scanner scan = new Scanner(f))
{

DirectedGraph<Item,String> result = new DirectedGraph<>();
List<Item> items = new ArrayList<>();

// Reading the items
int numItems = scan.nextInt();
for (int i=0; i < numItems; i++)
{

int profit = scan.nextInt();
int weight = scan.nextInt();
Item item = new Item(profit,weight);
items.add(item);
result.addNode(item);

}

// Reading the arcs / precedence constraints
int numArcs = scan.nextInt();
for (int i=0; i < numArcs; i++)
{

int fromIndex = scan.nextInt();
int toIndex = scan.nextInt();
String reason = scan.next();

Item from = items.get(fromIndex);
Item to = items.get(toIndex);
result.addArc(from, to, reason);

}

return result;
}

}

ERASMUS UNIVERSITY ROTTERDAM

Model Class

54

ERASMUS UNIVERSITY ROTTERDAM

1. Read instance data from a file into an instance data structure

2. Convert the graph data structure to a CPLEX model

3. Solve the CPLEX model and report the results

55

Solving an LP: Steps Required

ERASMUS UNIVERSITY ROTTERDAM 56

The Model class – Constructor and Variables
public class Model
{

private DirectedGraph<Item,String> instance;
private int capacity;

private IloCplex cplex;

private Map<Item,IloNumVar> varMap;

public Model(DirectedGraph<Item,String> instance, int capacity) throws IloException
{

// Initialize the instance variables
this.instance = instance;
this.capacity = capacity;
this.cplex = new IloCplex();

// Create a map to link items to variables
this.varMap = new HashMap<>();

// Initialize the model. It is important to initialize the variables first!
addVariables();
addKnapsackConstraint();
addPrecedenceConstraints();
addObjective();

}
…

}

We start by storing the data of a problem
instance. In this case we use two

parameters for the instance (in the
assignment there will be a separate class)

ERASMUS UNIVERSITY ROTTERDAM 57

The Model class – Constructor and Variables
public class Model
{

private DirectedGraph<Item,String> instance;
private int capacity;

private IloCplex cplex;

private Map<Item,IloNumVar> varMap;

public Model(DirectedGraph<Item,String> instance, int capacity) throws IloException
{

// Initialize the instance variables
this.instance = instance;
this.capacity = capacity;
this.cplex = new IloCplex();

// Create a map to link items to variables
this.varMap = new HashMap<>();

// Initialize the model. It is important to initialize the variables first!
addVariables();
addKnapsackConstraint();
addPrecedenceConstraints();
addObjective();

}
…

}

We also initialize an IloCplex object
which we will use to construct the model.

Almost everything we do with IloCplex
can throw an IloException, which is a
checked exception. In this case we throw it

to the caller.

ERASMUS UNIVERSITY ROTTERDAM 58

The Model class – Constructor and Variables
public class Model
{

private DirectedGraph<Item,String> instance;
private int capacity;

private IloCplex cplex;

private Map<Item,IloNumVar> varMap;

public Model(DirectedGraph<Item,String> instance, int capacity) throws IloException
{

// Initialize the instance variables
this.instance = instance;
this.capacity = capacity;
this.cplex = new IloCplex();

// Create a map to link items to variables
this.varMap = new HashMap<>();

// Initialize the model. It is important to initialize the variables first!
addVariables();
addKnapsackConstraint();
addPrecedenceConstraints();
addObjective();

}
…

}

We also initialize an IloCplex object
which we will use to construct the model.

Almost everything we do with IloCplex
can throw an IloException, which is a
checked exception. In this case we throw it

to the caller.

ERASMUS UNIVERSITY ROTTERDAM 59

The Model class – Constructor and Variables
public class Model
{

private DirectedGraph<Item,String> instance;
private int capacity;

private IloCplex cplex;

private Map<Item,IloNumVar> varMap;

public Model(DirectedGraph<Item,String> instance, int capacity) throws IloException
{

// Initialize the instance variables
this.instance = instance;
this.capacity = capacity;
this.cplex = new IloCplex();

// Create a map to link items to variables
this.varMap = new HashMap<>();

// Initialize the model. It is important to initialize the variables first!
addVariables();
addKnapsackConstraint();
addPrecedenceConstraints();
addObjective();

}
…

}

It is often very useful to be able to translate
between variables in the model and objects
from our problem instance. For this purpose
we create a Map that can translate an Item

object to a decision variable.

ERASMUS UNIVERSITY ROTTERDAM 60

The Model class – Constructor and Variables
public class Model
{

private DirectedGraph<Item,String> instance;
private int capacity;

private IloCplex cplex;

private Map<Item,IloNumVar> varMap;

public Model(DirectedGraph<Item,String> instance, int capacity) throws IloException
{

// Initialize the instance variables
this.instance = instance;
this.capacity = capacity;
this.cplex = new IloCplex();

// Create a map to link items to variables
this.varMap = new HashMap<>();

// Initialize the model. It is important to initialize the variables first!
addVariables();
addKnapsackConstraint();
addPrecedenceConstraints();
addObjective();

}
…

}

It is often very useful to be able to translate
between variables in the model and objects
from our problem instance. For this purpose
we create a Map that can translate an Item

object to a decision variable.

ERASMUS UNIVERSITY ROTTERDAM 61

The Model class – Constructor and Variables
public class Model
{

private DirectedGraph<Item,String> instance;
private int capacity;

private IloCplex cplex;

private Map<Item,IloNumVar> varMap;

public Model(DirectedGraph<Item,String> instance, int capacity) throws IloException
{

// Initialize the instance variables
this.instance = instance;
this.capacity = capacity;
this.cplex = new IloCplex();

// Create a map to link items to variables
this.varMap = new HashMap<>();

// Initialize the model. It is important to initialize the variables first!
addVariables();
addKnapsackConstraint();
addPrecedenceConstraints();
addObjective();

}
…

}

In general it is a good idea to do the model
building in separate methods. Start with a

method for initializing the variables.

Add a separate method for each type of
constraint. This way it is easy to disable one

type of constraint by commenting out the call
to the initialization function.

Finally, call a method that will initialize the
objective.

ERASMUS UNIVERSITY ROTTERDAM 62

The Model class – Model Building
public class Model
{
……

private void addVariables() throws IloException
{

for (Item i : instance.getNodes())
{

IloNumVar var = cplex.boolVar();
varMap.put(i, var);

}
}

……
}

In this case we create binary variables of and
put them into the map.

We do nothing else with the variables, as we
will only use the in the other initialization

methods.

If we want to create a model that allows for
fractionally selected items, we should call

cplex.numVar(0,1);

𝑥𝑖 ∈ {0,1}

ERASMUS UNIVERSITY ROTTERDAM 63

The Model class – Model Building
public class Model
{
……

private void addKnapsackConstraint() throws IloException
{

IloNumExpr lhs = cplex.constant(0);
for (Item i : instance.getNodes())
{

IloNumVar var = varMap.get(i);
IloNumExpr term = cplex.prod(i.getWeight(), var);
lhs = cplex.sum(lhs, term);

}
cplex.addLe(lhs, capacity);

}
……
}

As we want to create an expression that is
the sum of every binary variable multiplied

by the weight of the corresponding item, it is
a good idea to start an “empty” expression

with the constant 0, as adding 0 to any
expression does not change it.

෍

𝑖=1

𝑛

𝑎𝑖𝑥𝑖 ≤ 𝑏

ERASMUS UNIVERSITY ROTTERDAM 64

The Model class – Model Building
public class Model
{
……

private void addKnapsackConstraint() throws IloException
{

IloNumExpr lhs = cplex.constant(0);
for (Item i : instance.getNodes())
{

IloNumVar var = varMap.get(i);
IloNumExpr term = cplex.prod(i.getWeight(), var);
lhs = cplex.sum(lhs, term);

}
cplex.addLe(lhs, capacity);

}
……
}

෍

𝑖=1

𝑛

𝑎𝑖𝑥𝑖 ≤ 𝑏

For every item, we retrieve the
corresponding variable and create a term by

taking its product with the weight of the
item.

ERASMUS UNIVERSITY ROTTERDAM 65

The Model class – Model Building
public class Model
{
……

private void addKnapsackConstraint() throws IloException
{

IloNumExpr lhs = cplex.constant(0);
for (Item i : instance.getNodes())
{

IloNumVar var = varMap.get(i);
IloNumExpr term = cplex.prod(i.getWeight(), var);
lhs = cplex.sum(lhs, term);

}
cplex.addLe(lhs, capacity);

}
……
}

෍

𝑖=1

𝑛

𝑎𝑖𝑥𝑖 ≤ 𝑏

We then add the term to the expression we
had build until now.

ERASMUS UNIVERSITY ROTTERDAM 66

The Model class – Model Building
public class Model
{
……

private void addKnapsackConstraint() throws IloException
{

IloNumExpr lhs = cplex.constant(0);
for (Item i : instance.getNodes())
{

IloNumVar var = varMap.get(i);
IloNumExpr term = cplex.prod(i.getWeight(), var);
lhs = cplex.sum(lhs, term);

}
cplex.addLe(lhs, capacity);

}
……
}

෍

𝑖=1

𝑛

𝑎𝑖𝑥𝑖 ≤ 𝑏

Finally, we add the expression as a constraint
to the model, by stating that the expression

should be smaller than the capacity.

ERASMUS UNIVERSITY ROTTERDAM 67

The Model class – Model Building
public class Model
{
……

private void addPrecedenceConstraints() throws IloException
{

for (DirectedGraphArc<Item,String> arc : instance.getArcs())
{

IloNumVar from = varMap.get(arc.getFrom());
IloNumVar to = varMap.get(arc.getTo());
cplex.addLe(from, to);

}
}

……
}

𝑥𝑖 ≤ 𝑥𝑗

For the precedence constraints, we iterate
over the arcs in the graph and create a new

constraint for each arc.

ERASMUS UNIVERSITY ROTTERDAM 68

The Model class – Model Building
public class Model
{
……

private void addPrecedenceConstraints() throws IloException
{

for (DirectedGraphArc<Item,String> arc : instance.getArcs())
{

IloNumVar from = varMap.get(arc.getFrom());
IloNumVar to = varMap.get(arc.getTo());
cplex.addLe(from, to);

}
}

……
}

𝑥𝑖 ≤ 𝑥𝑗

For the precedence constraints, we iterate
over the arcs in the graph and create a new

constraint for each arc.

ERASMUS UNIVERSITY ROTTERDAM 69

The Model class – Model Building
public class Model
{
……

private void addObjective() throws IloException
{

IloNumExpr obj = cplex.constant(0);
for (Item i : instance.getNodes())
{

IloNumVar var = varMap.get(i);
IloNumExpr term = cplex.prod(var, i.getProfit());
obj = cplex.sum(obj, term);

}
cplex.addMaximize(obj);

}
……
}

Building the expression for the objective
happens in a very similar way to building the
expression for the constraint, except we now

use getProfit() instead of
getWeight()

෍

𝑖=1

𝑛

𝑝𝑖𝑥𝑖Maximize

ERASMUS UNIVERSITY ROTTERDAM 70

The Model class – Model Building
public class Model
{
……

private void addObjective() throws IloException
{

IloNumExpr obj = cplex.constant(0);
for (Item i : instance.getNodes())
{

IloNumVar var = varMap.get(i);
IloNumExpr term = cplex.prod(var, i.getProfit());
obj = cplex.sum(obj, term);

}
cplex.addMaximize(obj);

}
……
}

෍

𝑖=1

𝑛

𝑝𝑖𝑥𝑖Maximize

We call addMaximize() to add the
objective function.

If we would like to modify the objective later,
we should store the IloObjective object,

but in this case we don’t need it for later.

ERASMUS UNIVERSITY ROTTERDAM

Solving and Updating
the Model

71

ERASMUS UNIVERSITY ROTTERDAM

1. Read instance data from a file into an instance data structure

2. Convert the graph data structure to a CPLEX model

3. Solve the CPLEX model and report the results

72

Solving an LP: Steps Required

ERASMUS UNIVERSITY ROTTERDAM 73

The Model class – Solving and the Solution
public class Model
{
……

public boolean solve() throws IloException
{

return cplex.solve();
}

public List<Item> getSolution() throws IloException
{

List<Item> result = new ArrayList<>();
for (Item i : instance.getNodes())
{

IloNumVar var = varMap.get(i);
double value = cplex.getValue(var);
if (value >= 0.5)
{

result.add(i);
}

}
return result;

}
……
}

For solving the current model, we can call the
solve() method on the IloCplex object.

This method returns true if a solution was
found and false if not (for example because it

is infeasible)

ERASMUS UNIVERSITY ROTTERDAM 74

The Model class – Solving and the Solution
public class Model
{
……

public boolean solve() throws IloException
{

return cplex.solve();
}

public List<Item> getSolution() throws IloException
{

List<Item> result = new ArrayList<>();
for (Item i : instance.getNodes())
{

IloNumVar var = varMap.get(i);
double value = cplex.getValue(var);
if (value >= 0.5)
{

result.add(i);
}

}
return result;

}
……
}

We create a method that will take the values
of the decision variables and builds a list of

selected items.

ERASMUS UNIVERSITY ROTTERDAM 75

The Model class – Solving and the Solution
public class Model
{
……

public boolean solve() throws IloException
{

return cplex.solve();
}

public List<Item> getSolution() throws IloException
{

List<Item> result = new ArrayList<>();
for (Item i : instance.getNodes())
{

IloNumVar var = varMap.get(i);
double value = cplex.getValue(var);
if (value >= 0.5)
{

result.add(i);
}

}
return result;

}
……
}

We can also obtain the value of a variable in
the solution using the getValue() method
and passing relevant IloNumVar objects as

an argument.

ERASMUS UNIVERSITY ROTTERDAM 76

The Model class – Solving and the Solution
public class Model
{
……

public boolean solve() throws IloException
{

return cplex.solve();
}

public List<Item> getSolution() throws IloException
{

List<Item> result = new ArrayList<>();
for (Item i : instance.getNodes())
{

IloNumVar var = varMap.get(i);
double value = cplex.getValue(var);
if (value >= 0.5)
{

result.add(i);
}

}
return result;

}
……
}

We have to be careful with numerical
precision: decision variables may get a value

that is slightly less than 1. Since we work with
integer solutions, we can use 0.5 as a

threshold. For continuous variables, we have
to use threshold closer to 1.

ERASMUS UNIVERSITY ROTTERDAM 77

Solving the Model

public static void main(String [] args)
{

try
{

DirectedGraph<Item,String> instance = read(new File("instance.txt"));
System.out.println("The following instance was read:");
System.out.println(instance);

Model model = new Model(instance, 9);
model.solve();
System.out.println(model.getSolution());

}
catch (IloException e)
{

e.printStackTrace();
}
catch (FileNotFoundException e)
{

e.printStackTrace();
}

}

The following instance was read:
DirectedGraph [nodes=[Item [profit=10, weight=5], Item [profit=7, weight=2], Item [profit=15,
weight=7]], arcs=[Arc [from=Item [profit=15, weight=7], to=Item [profit=10, weight=5],
data=expensive], Arc [from=Item [profit=10, weight=5], to=Item [profit=7, weight=2],
data=cheap]]]

Found incumbent of value 0.000000 after 0.00 sec. (0.00 ticks)
Tried aggregator 1 time.
MIP Presolve eliminated 3 rows and 3 columns.
MIP Presolve modified 3 coefficients.
All rows and columns eliminated.
Presolve time = 0.00 sec. (0.00 ticks)

Root node processing (before b&c):
Real time = 0.00 sec. (0.01 ticks)

Parallel b&c, 2 threads:
Real time = 0.00 sec. (0.00 ticks)
Sync time (average) = 0.00 sec.
Wait time (average) = 0.00 sec.

Total (root+branch&cut) = 0.00 sec. (0.01 ticks)

[Item [profit=10, weight=5], Item [profit=7, weight=2]]

ERASMUS UNIVERSITY ROTTERDAM

• After solving the model, we may want to update it and solve again.

78

Updating the Model

public class Model
{
……
public void setItem(Item i, boolean enabled) throws IloException
{

IloNumVar var = varMap.get(i);
if (enabled)
{

var.setLB(0);
var.setUB(1);

}
else
{

var.setLB(0);
var.setUB(0);

}
}

……
}

If we set the lower bound and upper
bound of a variable to the same

value, it is fixed to that value.

ERASMUS UNIVERSITY ROTTERDAM 79

Updating the Model

public static void main(String [] args)
{

try
{

DirectedGraph<Item,String> instance = read(new File("instance.txt"));
System.out.println("The following instance was read:");
System.out.println(instance);

Model model = new Model(instance, 9);
model.solve();
System.out.println(model.getSolution());

Item i = instance.getNodes().get(0);
model.setItem(i, false);
model.solve();
System.out.println(model.getSolution());

}
catch (IloException e)
{

e.printStackTrace();
}
catch (FileNotFoundException e)
{

e.printStackTrace();
}

}

The following instance was read:
DirectedGraph [nodes=[Item [profit=10, weight=5], Item [profit=7, weight=2], Item [profit=15,
weight=7]], arcs=[Arc [from=Item [profit=15, weight=7], to=Item [profit=10, weight=5],
data=expensive], Arc [from=Item [profit=10, weight=5], to=Item [profit=7, weight=2],
data=cheap]]]

[…]

[Item [profit=10, weight=5], Item [profit=7, weight=2]]

[…]

[Item [profit=7, weight=2]]

First solution

ERASMUS UNIVERSITY ROTTERDAM 80

Updating the Model

public static void main(String [] args)
{

try
{

DirectedGraph<Item,String> instance = read(new File("instance.txt"));
System.out.println("The following instance was read:");
System.out.println(instance);

Model model = new Model(instance, 9);
model.solve();
System.out.println(model.getSolution());

Item i = instance.getNodes().get(0);
model.setItem(i, false);
model.solve();
System.out.println(model.getSolution());

}
catch (IloException e)
{

e.printStackTrace();
}
catch (FileNotFoundException e)
{

e.printStackTrace();
}

}

The following instance was read:
DirectedGraph [nodes=[Item [profit=10, weight=5], Item [profit=7, weight=2], Item [profit=15,
weight=7]], arcs=[Arc [from=Item [profit=15, weight=7], to=Item [profit=10, weight=5],
data=expensive], Arc [from=Item [profit=10, weight=5], to=Item [profit=7, weight=2],
data=cheap]]]

[…]

[Item [profit=10, weight=5], Item [profit=7, weight=2]]

[…]

[Item [profit=7, weight=2]]

Second solution

ERASMUS UNIVERSITY ROTTERDAM

Final Hints and Tips

81

ERASMUS UNIVERSITY ROTTERDAM

• To prevent that we have to reinvent the wheel each time, we should
use libraries for specific tasks

• The CPLEX library can be used to model (Integer) Linear
Programming Problems

• Other very useful libraries exist as well:
• The Apache Math Commons library has a lot of useful tools for

mathematical computations (statistics, probability distributions, etc)

• Apache POI can be used to read and write Excel files

• Jackson-databind is useful for reading and writing objects easily

• countless others

• If you need many libraries, consider learning a dependency
manager such as Maven.

82

Libraries

ERASMUS UNIVERSITY ROTTERDAM

• Make use of the DirectedGraph and DirectedGraphArc classes
provided in the CPLEX example.

• To store demand, supply and the costs, think about which data
types you want to assign to the nodes and arcs:

• Most elegant is to write your own data classes and have a
DirectedGraph<MyNodeData,MyArcData>

• If you are lazy, try only declaring instance variables and let Eclipse generate
the constructor, getters/setters and toString() method for you.

• Alternatively you can consider a
DirectedGraph<List<Integer>,List<Integer>>

• You can fix variables to 1 or 0 using the lower and upper bounds.

• To debug your CPLEX model, you can export it to a file.

83

Tips For Your Assignment

